Dynamical Systems /amath/ en Complex/Dynamical Systems Seminar - Patrick Weidman /amath/2018/12/13/complexdynamical-systems-seminar-patrick-weidman <span>Complex/Dynamical Systems Seminar - Patrick Weidman</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2018-12-13T00:00:00-07:00" title="Thursday, December 13, 2018 - 00:00">Thu, 12/13/2018 - 00:00</time> </span> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/amath/taxonomy/term/261" hreflang="en">Dynamical Systems</a> <a href="/amath/taxonomy/term/12" hreflang="en">Events</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p><i>The boundary layer flow induced above the torsional motion of a disk</i></p><p>The boundary layer flow above a disk in torsional motion with angular velocity proportional to&nbsp;r^m&nbsp;is investigated for all values of&nbsp;m &gt;&nbsp;0. The induced flow is fully three dimensional&nbsp;and we compute wall shear stresses in the radial and azimuthal directions as a function of&nbsp;the torsional exponent&nbsp;m. Also we compute the flow induced in the far field. The large&nbsp;m&nbsp;asymptotics of the problem are computed and compared with numerical solutions. It is&nbsp;noted that&nbsp;m&nbsp;= 1 corresponds to the classic problem of von Karman disk flow.</p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 13 Dec 2018 07:00:00 +0000 Anonymous 5655 at /amath Complex/Dynamical Systems Seminar - Ian Klasky /amath/2018/01/25/complexdynamical-systems-seminar-ian-klasky <span> Complex/Dynamical Systems Seminar - Ian Klasky</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2018-01-25T00:00:00-07:00" title="Thursday, January 25, 2018 - 00:00">Thu, 01/25/2018 - 00:00</time> </span> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/amath/taxonomy/term/261" hreflang="en">Dynamical Systems</a> <a href="/amath/taxonomy/term/12" hreflang="en">Events</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p><i>Quantifying Resilience in One-Dimensional Dynamical Systems</i></p><p>In common discourse, resilience is often taken to be the ability of a system to undergo disturbance(s) while retaining useful characteristics. A mathematically precise definition of resilience would allow us to assess and compare quantities of resilience in a range of natural and engineered systems. In this study, we develop a method for quantifying the resilience of single population systems to regular disturbance based on its growth dynamics.&nbsp;</p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 25 Jan 2018 07:00:00 +0000 Anonymous 5413 at /amath